






# MATERIALS

Housing: Anodized aluminium alloy

Bypass valve: Brass

Seals: NBR Nitrile (FKM - on request fluoroelastomer)

Indicator housing: Brass

# PRESSURE (ISO 10771-1:2002)

Max working: 11 MPa (110 bar)

Test: 16 MPa (160 bar)

Bursting: 30 MPa (300 bar)

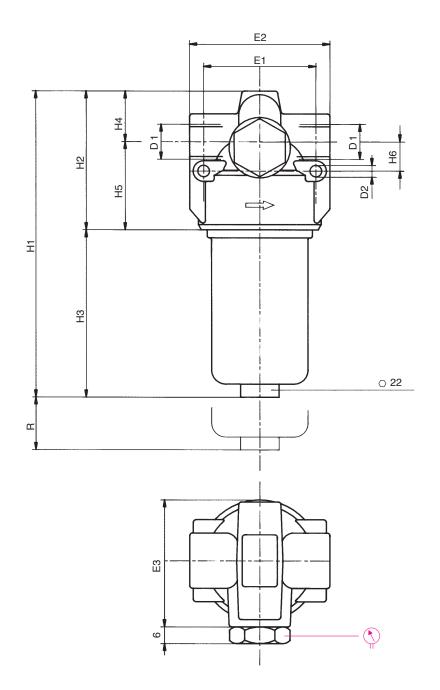
Collapse, differential for the filter element (ISO 2941): 8 MPa (80 bar)

#### APPLICATION EXAMPLE



# BYPASS VALVE

Setting: 600 kPa (6 bar) ± 10%


# WORKING TEMPERATURE

From -25° to +110° C

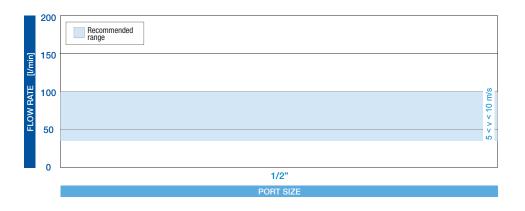
# COMPATIBILITY (ISO 2943:1999)

Full with fluids: HH-HL-HM-HV-HTG (according to ISO 6743/4)
For fluids different than the above mentioned, please contact our Sales Department.





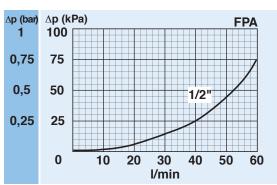
| FILTER HOUSING |       |      |     |     |    |     |    |    |    |    |    |    |    |      |
|----------------|-------|------|-----|-----|----|-----|----|----|----|----|----|----|----|------|
|                |       | D1   | D2  | H1  | H2 | Н3  | H4 | Н5 | Н6 | E1 | E2 | E3 | R  | kg   |
|                | FPA11 | 1/2" | 6,5 | 157 | 78 | 79  | 28 | 50 | 17 | 64 | 76 | 75 | 60 | 0,65 |
|                | FPA12 | 1/2" | 6,5 | 244 | 78 | 166 | 28 | 50 | 17 | 64 | 76 | 75 | 60 | 0,85 |


# ORDERING AND OPTION CHART

|          | TYPE                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                              |                                                                                                                                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | F = FILTER COMPLETE                                                                                                                                                                                                                                                                                                                                                                                                        | F                                            | F                                            |                                                                                                                                                                                                                                                                                                  |
|          | B = FILTER HOUSING                                                                                                                                                                                                                                                                                                                                                                                                         | В                                            | В                                            | <b>ELEMENT</b> E                                                                                                                                                                                                                                                                                 |
| <b>\</b> | FAMILY<br>NOMINAL SIZE & LENGHT                                                                                                                                                                                                                                                                                                                                                                                            | 11                                           | 12                                           | FAMILY P A SIZE & LENGHT                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                           | 12                                           |                                                                                                                                                                                                                                                                                                  |
|          | PORT TYPE                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | В                                            | $\neg$                                                                                                                                                                                                                                                                                           |
|          | B = BSP thread                                                                                                                                                                                                                                                                                                                                                                                                             | B                                            | _                                            |                                                                                                                                                                                                                                                                                                  |
|          | N = NPT thread                                                                                                                                                                                                                                                                                                                                                                                                             | N O                                          | N O                                          |                                                                                                                                                                                                                                                                                                  |
|          | S = SAE thread                                                                                                                                                                                                                                                                                                                                                                                                             | S                                            | S                                            |                                                                                                                                                                                                                                                                                                  |
| 0 4      | PORT SIZE                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                           |                                              | $\neg$                                                                                                                                                                                                                                                                                           |
| _        | 04 = 1/2"                                                                                                                                                                                                                                                                                                                                                                                                                  | 04                                           | 04                                           |                                                                                                                                                                                                                                                                                                  |
|          | BYPASS VALVE                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                              | _                                                                                                                                                                                                                                                                                                |
|          | W = without                                                                                                                                                                                                                                                                                                                                                                                                                | W                                            | W                                            |                                                                                                                                                                                                                                                                                                  |
|          | C = 600 kPa (6 bar)                                                                                                                                                                                                                                                                                                                                                                                                        | С                                            | С                                            |                                                                                                                                                                                                                                                                                                  |
|          | SEALS                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | ı                                            | SEALS                                                                                                                                                                                                                                                                                            |
|          | N = NBR Nitrile                                                                                                                                                                                                                                                                                                                                                                                                            | N                                            | N                                            | N = NBR                                                                                                                                                                                                                                                                                          |
|          | F = FKM Fluoroelastomer                                                                                                                                                                                                                                                                                                                                                                                                    | F                                            | F                                            | F = FKM                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                              |                                                                                                                                                                                                                                                                                                  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                              |                                                                                                                                                                                                                                                                                                  |
|          | FILTER MEDIA                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | т                                            | FILTER MEDIA                                                                                                                                                                                                                                                                                     |
| Ш        | FA = fiber $5 \mu m_{(c)} \beta > 1.000$                                                                                                                                                                                                                                                                                                                                                                                   | FA                                           | FA                                           | $FA = fiber  5 \mu m_{(c)}$                                                                                                                                                                                                                                                                      |
|          | FA = fiber $5 \mu m_{(c)} \beta > 1.000$<br>FB = fiber $7 \mu m_{(c)} \beta > 1.000$                                                                                                                                                                                                                                                                                                                                       | FB                                           | FB                                           | FA = fiber $5 \mu m_{(c)}$<br>FB = fiber $7 \mu m_{(c)}$                                                                                                                                                                                                                                         |
|          | FA = fiber $5 \mu m_{(c)} \beta > 1.000$<br>FB = fiber $7 \mu m_{(c)} \beta > 1.000$<br>FC = fiber $12 \mu m_{(c)} \beta > 1.000$                                                                                                                                                                                                                                                                                          | FB<br>FC                                     | FB<br>FC                                     | FA = fiber $5 \mu m_{(c)}$<br>FB = fiber $7 \mu m_{(c)}$<br>FC = fiber $12 \mu m_{(c)}$                                                                                                                                                                                                          |
|          | FA = fiber $5 \mu m_{(e)} \beta > 1.000$<br>FB = fiber $7 \mu m_{(e)} \beta > 1.000$<br>FC = fiber $12 \mu m_{(e)} \beta > 1.000$<br>FD = fiber $21 \mu m_{(e)} \beta > 1.000$                                                                                                                                                                                                                                             | FB<br>FC<br>FD                               | FB<br>FC<br>FD                               | FA = fiber $5 \mu m_{(c)}$<br>FB = fiber $7 \mu m_{(c)}$<br>FC = fiber $12 \mu m_{(c)}$<br>FD = fiber $21 \mu m_{(c)}$                                                                                                                                                                           |
|          | FA = fiber $5 \mu m_{(c)} \beta > 1.000$<br>FB = fiber $7 \mu m_{(c)} \beta > 1.000$<br>FC = fiber $12 \mu m_{(c)} \beta > 1.000$                                                                                                                                                                                                                                                                                          | FB<br>FC                                     | FB<br>FC                                     | FA = fiber $5 \mu m_{(c)}$<br>FB = fiber $7 \mu m_{(c)}$<br>FC = fiber $12 \mu m_{(c)}$                                                                                                                                                                                                          |
| <u></u>  | FA = fiber $5 \mu m_{(e)} \beta > 1.000$<br>FB = fiber $7 \mu m_{(e)} \beta > 1.000$<br>FC = fiber $12 \mu m_{(e)} \beta > 1.000$<br>FD = fiber $21 \mu m_{(e)} \beta > 1.000$<br>CC = cellulose $10 \mu m \beta > 2$                                                                                                                                                                                                      | FB<br>FC<br>FD                               | FB<br>FC<br>FD                               | FA = fiber $5 \mu m_{(c)}$<br>FB = fiber $7 \mu m_{(c)}$<br>FC = fiber $12 \mu m_{(c)}$<br>FD = fiber $21 \mu m_{(c)}$                                                                                                                                                                           |
|          | FA = fiber $5 \mu m_{(c)} \beta > 1.000$<br>FB = fiber $7 \mu m_{(c)} \beta > 1.000$<br>FC = fiber $12 \mu m_{(c)} \beta > 1.000$<br>FD = fiber $21 \mu m_{(c)} \beta > 1.000$<br>CC = cellulose $10 \mu m \beta > 2$                                                                                                                                                                                                      | FB<br>FC<br>FD<br>CC                         | FB<br>FC<br>FD<br>CC                         | FA = fiber $5 \mu m_{(c)}$<br>FB = fiber $7 \mu m_{(c)}$<br>FC = fiber $12 \mu m_{(c)}$<br>FD = fiber $21 \mu m_{(c)}$<br>CC = cellulose $10 \mu m$                                                                                                                                              |
|          | FA = fiber $5 \mu m_{(e)} \beta > 1.000$ FB = fiber $7 \mu m_{(e)} \beta > 1.000$ FC = fiber $12 \mu m_{(e)} \beta > 1.000$ FD = fiber $21 \mu m_{(e)} \beta > 1.000$ CC = cellulose $10 \mu m \beta > 2$ CLOGGING INDICATOR 03 = port, plugged                                                                                                                                                                            | FB<br>FC<br>FD<br>CC                         | FB<br>FC<br>FD<br>CC                         | FA = fiber $5 \mu m_{(c)}$ FB = fiber $7 \mu m_{(c)}$ FC = fiber $12 \mu m_{(c)}$ FD = fiber $21 \mu m_{(c)}$ CC = cellulose $10 \mu m$ When the filter is ordered with FKM seals, the first digit                                                                                               |
|          | FA = fiber $5 \mu m_{(c)} \beta > 1.000$<br>FB = fiber $7 \mu m_{(c)} \beta > 1.000$<br>FC = fiber $12 \mu m_{(c)} \beta > 1.000$<br>FD = fiber $21 \mu m_{(c)} \beta > 1.000$<br>CC = cellulose $10 \mu m \beta > 2$                                                                                                                                                                                                      | FB<br>FC<br>FD<br>CC                         | FB<br>FC<br>FD<br>CC                         | FA = fiber $5 \mu m_{(c)}$ FB = fiber $7 \mu m_{(c)}$ FC = fiber $12 \mu m_{(c)}$ FD = fiber $21 \mu m_{(c)}$ CC = cellulose $10 \mu m$ When the filter is ordered with FKM seals, the first digit of the indicator code is a letter                                                             |
|          | FA = fiber $5 \mu m_{(c)} \beta > 1.000$<br>FB = fiber $7 \mu m_{(c)} \beta > 1.000$<br>FC = fiber $12 \mu m_{(c)} \beta > 1.000$<br>FD = fiber $21 \mu m_{(c)} \beta > 1.000$<br>CC = cellulose $10 \mu m \beta > 2$<br>CLOGGING INDICATOR<br>03 = port, plugged<br>5E = visual differential 500 kPa (5 bar)<br>6E = electrical differential 500 kPa (5 bar)                                                              | FB<br>FC<br>FD<br>CC                         | FB<br>FC<br>FD<br>CC                         | $FA = fiber  5\mu m_{(e)}$ $FB = fiber  7\mu m_{(e)}$ $FC = fiber  12\mu m_{(e)}$ $FD = fiber  21\mu m_{(e)}$ $CC = cellulose  10\mu m$ $When the filter is ordered with FKM seals, the first digit of the indicator code is a letter (please see page 182 - 183).$                              |
|          | FA = fiber $5 \mu m_{(c)} \beta > 1.000$<br>FB = fiber $7 \mu m_{(c)} \beta > 1.000$<br>FC = fiber $12 \mu m_{(c)} \beta > 1.000$<br>FD = fiber $21 \mu m_{(c)} \beta > 1.000$<br>CC = cellulose $10 \mu m \beta > 2$<br>CLOGGING INDICATOR<br>03 = port, plugged<br>5E = visual differential 500 kPa (5 bar)                                                                                                              | FB<br>FC<br>FD<br>CC<br>03<br>5E<br>6E<br>7E | FB<br>FC<br>FD<br>CC<br>03<br>5E<br>6E<br>7E | FA = fiber $5 \mu m_{(e)}$ FB = fiber $7 \mu m_{(e)}$ FC = fiber $12 \mu m_{(e)}$ FD = fiber $21 \mu m_{(e)}$ CC = cellulose $10 \mu m$ When the filter is ordered with FKM seals, the first digit of the indicator code is a letter (please see page $182 - 183$ ).  N.B. Indicator             |
|          | FA = fiber $5 \mu m_{(c)} \beta > 1.000$<br>FB = fiber $7 \mu m_{(c)} \beta > 1.000$<br>FC = fiber $12 \mu m_{(c)} \beta > 1.000$<br>FD = fiber $21 \mu m_{(c)} \beta > 1.000$<br>CC = cellulose $10 \mu m \beta > 2$<br>CLOGGING INDICATOR<br>03 = port, plugged<br>5E = visual differential 500 kPa (5 bar)<br>6E = electrical differential 500 kPa (5 bar)                                                              | FB<br>FC<br>FD<br>CC<br>03<br>5E<br>6E       | FB<br>FC<br>FD<br>CC                         | FA = fiber $5 \mu m_{(c)}$ FB = fiber $7 \mu m_{(c)}$ FC = fiber $12 \mu m_{(c)}$ FD = fiber $21 \mu m_{(c)}$ CC = cellulose $10 \mu m$ When the filter is ordered with FKM seals, the first digit of the indicator code is a letter (please see page $182 - 183$ ).                             |
|          | FA = fiber $5\mu m_{(e)} \beta > 1.000$<br>FB = fiber $7\mu m_{(e)} \beta > 1.000$<br>FC = fiber $12\mu m_{(e)} \beta > 1.000$<br>FD = fiber $21\mu m_{(e)} \beta > 1.000$<br>CC = cellulose $10\mu m \beta > 2$<br>CLOGGING INDICATOR<br>03 = port, plugged<br>5E = visual differential $500 \text{ kPa} (5 \text{ bar})$<br>6E = electrical differential $500 \text{ kPa} (5 \text{ bar})$<br>7E = indicator 6E with LED | FB<br>FC<br>FD<br>CC<br>03<br>5E<br>6E<br>7E | FB<br>FC<br>FD<br>CC<br>03<br>5E<br>6E<br>7E | FA = fiber $5 \mu m_{(c)}$ FB = fiber $7 \mu m_{(c)}$ FC = fiber $12 \mu m_{(c)}$ FD = fiber $21 \mu m_{(c)}$ CC = cellulose $10 \mu m$ When the filter is ordered with FKM seals, the first digit of the indicator code is a letter (please see page $182 - 183$ ).  N.B. Indicator series $72$ |

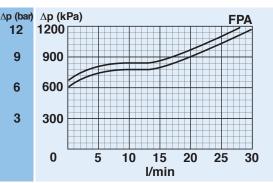
| FILTER | ELEMEN | IT |     |          |            |          |        |
|--------|--------|----|-----|----------|------------|----------|--------|
|        | Α      | В  | С   | kg       | Area (cm²) |          | øA►    |
|        |        |    |     | <u> </u> | Media F+   | Media C+ |        |
| EPA11  | 22     | 42 | 91  | 0,15     | 295        | 295      | 0      |
| EPA12  | 22     | 42 | 179 | 0,25     | 600        | 600      | ▼ ØB ▼ |

#### **FLUID SPEED**


when selecting the filter size, we suggest to consider also the max recommended fluid speed (in pressure lines normally 5 < v < 10 m/s)

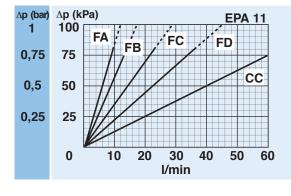


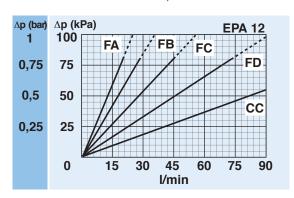
#### PRESSURE DROP CURVES (Δp)


The "Assembly Pressure Drop ( $\Delta p$ )" is obtained by adding the pressure drop values of the Filter Housing and of the Clean Filter Element corresponding to the considered Flow Rate and it must be lower than 80 kPa (0,8 bar).

# FILTER HOUSING PRESSURE DROP (mainly depending on the port size)




#### **BYPASS VALVE PRESSURE DROP**


When selecting the filter size, these curves must be taken into account if it is foreseen that any flow peak is to be absorbed by the bypass valve, it also must be of proper configuration to avoid pressure peaks. The valve pressure drop is directly proportional to fluid specific gravity.



#### CLEAN FILTER ELEMENT PRESSURE DROP WITH F+ AND C+ MEDIA

(depending both on the internal diameter of the element and on the filter media)





N.B. All the curves have been obtained with mineral oil having a kinematic viscosity 30 cSt and specific gravity 0,9 kg/dm³; for fluids with different features, please consider the factors described in the first part of this catalogue. All the curves are obtained from test done at the UFI HYDRAULIC DIVISION Laboratory, according to the specification ISO 3968:2005. In case of discrepancy, please check the contamination level, viscosity and features of the fluid in use.



#### **CLOGGING INDICATOR**

A visual or visual-electrical differential indicator is available as an option and allows monitoring of the element conditions, giving an exact indication of the right time to replace the element.

#### FILTER HOUSING

Head and bowl are made by high performance aluminium alloy ensuring the best fatigue resistance.

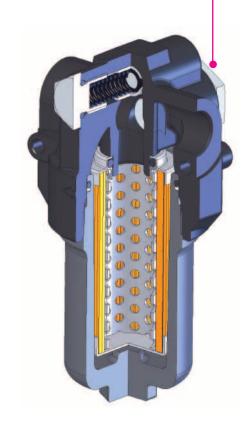
#### FILTER ELEMENT

The filter element is manufactured with filter medias selected in the UFI laboratory and mechanically supported to maintain the highest performance even at high differential pressures.

#### SEAL GUARANTEED

A perfect 0-ring seal is always ensured as it is not dependent on the tightening torque applied to the bowl.

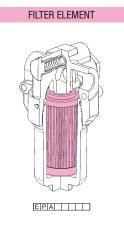
#### **EASY MAINTENANCE**

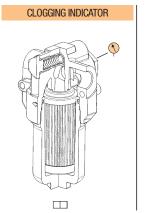

The hexagon end of the bowl allows for easy maintenance by using a simple hexagon wrench.

#### **CLOGGING INDICATOR**

For further technical informations and other options see page 182-183.






#### SPARE SEAL KIT

|       | NBR        | FKM        |  |  |  |
|-------|------------|------------|--|--|--|
| FPA11 | 521.0001.2 | 521.0062.2 |  |  |  |
| FPA12 | 521.0001.2 | 521.0062.2 |  |  |  |

# FILTER HOUSING BIPIAI 1 1 10 | 4 | IXIX





SPARE PARTS ELEMENTS (For filling up see table "Ordering and option chart")



